lunes, 28 de marzo de 2011

OLFATO

QUÍMICA DE LOS OLORES

El olfato es el sentido encargado de detectar y procesar los olores. Es un sentido químico, en el que actúan como estimulante las partículas aromáticas u odoríferas desprendidas de los cuerpos volátiles, que ingresan por el epitelio olfativoubicado en la nariz, y son procesadas por el sistema olfativo. La nariz distingue entre más de 10.000 aromas diferentes. El olfato es el sentido más fuerte al nacer. Así reconoce un bebé a su madre.

Las sustancias odorantes son
compuestos químicos volátiles trasportados por el aire. Los objetos olorosos liberan a laatmósfera pequeñas moléculas que percibimos al inspirar. Estas moléculas alcanzan la mucosa olfativa, que consta de tres tipos característicos de células: las células olfativas sensoriales, las células de sostén y las células basales, que se dividen aproximadamente una vez al mes y reemplazan a las células olfativas moribundas. Los 20 o 30 millones de células olfativas humanas contienen, en su extremo anterior, una pequeña cabeza con cerca de 20 pequeños filamentos sensoriales (cilios). El moco nasal acuoso transporta las moléculas aromáticas a los cilios con ayuda de proteínas fijadoras; los cilios transforman las señales químicas de los distintos aromas en respuestas eléctricas.


TRANSDUCCIÓN OLFATIVA
  • En los cilios comienza la transduccion.
  • Las moléculas olorosas se acoplan a las proteínas receptoras.

*Receptores olfativos:
– Aproximadamente 1000 proteínas diferentes
– Cada neurona olfativa sólo genera una proteína
– Distribución “aleatoria” en el epitelio olfativo
– ¡¡Mismos tipos de neuronas olfativas se conectan en
el mismo glomérulo!!
– Misma disposición entre distintos sujetos
– ¡¡Podemos detectar 100000 olores!!

Los principios comunes de Transducción sensorial ocurren en neuronas especializadas ó células epiteliales especializadas inervadas por neuronas.

a) Transducción = conversión de un estímulo en un cambio del potencial de membrana.
b) Amplificación de la señal , con bajo nivel de ruido.
c) Adaptación a fuertes, prolongados o repetidos estímulos.
d) Integración de señales.
La Transducción olfatoria depende de la activación de receptores especificos ligados a la proteina G. Para excitar un receptor olfatorio, es preciso que una sustancia sea volátil y capaz de disolverse en la capa de moco que recubre el epitelio olfatorio. Las moléculas receptoras del olfato se localizan en los cilios de las células olfatorias; existen más de 1,000 proteínas de unión a las diferentes fragancias. Cada proteina receptora olfatoria esta acoplada a una proteina G que activa la adenil ciclasa. Por consiguiente, cuando una molécula odorivectora se une a una molécula receptora apropiada, aumenta la concentración intracelular de AMP cíclico en las células receptoras. Este aumento de AMP ciclico abre un canal selectivo de cationes, lo que da lugar a la despolarización del receptor olfatorio. Si la despolarización alcanza el umbral para la generación de un potencial de acción, éste se propagara hasta el bulbo olfatorio.

las células receptoras olfatorias individuales responden a más de una sustancia olorosa, a pesar de que cada célula suele ser excitada de forma óptima por un determinado olor. Por consiguiente, es probable que la información olfatoria esté codificada en el patrón de la información entrante que el cerebro aprende a interpretar.

Conexiones centrales del Sistema olfatorio
A través de un nervio olfatorio corto las células olfatorias bipolares del epitelio olfatorio mandan sus axones atravesando la lámina cribosa hasta los bulbos olfatorios. Los bulbos olfatorios, que se caracterizan por una organización compleja, se proyectan hasta la corteza olfatoria del mismo lado a través del tracto olfatorio, y hasta la corteza olfatoria contralateral a través de la comisura anterior . Las fibras del tracto olfatorio lateral también se proyectan hasta el hipotálamo, donde desempeñan un importante papel en el desencadenamiento de la conducta sexual en animales, aunque probablemente no en el ser humano. Las proyecciones olfatorias alcanzan en el hipocampo, la amígdala y otras estructuras del sistema límbico. La información olfatoria alcanza al lóbulo frontal a través del tálamo.

GUSTO

La lengua está compuesta principalmente por músculos, y está cubierta con una membrana mucosa. Pequeños nódulos de tejido, llamados papilas, cubren la superficie superior de la lengua. Entre las papilas se encuentran las papilas gustativas, las cuales proveen la sensación del gusto. Además del gusto, la lengua actúa para mover el alimento y es importante para el habla.





TRANSDUCCIÓN ÁCIDA


 
Existen cuatro sabores básicos: salado, ácido, dulce y amargo. La complejidad del sabor de los alimentos es debida, en parte , a la mezcla de sensaciones que se originan a partir de la estimulación de las diferentes modalidades del gusto, pero principalmente a partir de la estimuación adicional de receptores olfatorios. Diferentes partes de la lengua muestran diferentes sensibilidades a estos distintos sabores, siendo la base de la lengua la más sensible a los sabores amargos, las partes laterales son sensibles a los sabores ácidos y salados, mientras que la punta es sensible a los sabores dulces. A pesar de estas diferencias regionales de sensibilidad, es importante recordar que las papilas gustativas pueden detectar todas las modalidades del gusto. Solamente el dorso de la lengua es insensible a las sensaciones gustativas especificas.

Las soluciones que son saladas (al igual que las ácidas) activan las células gustativas abriendo un canal ión específico, que se caracteriza por una alta permeabilidad a los iones Na+. Este canal es inhibido por una sustancia llamada amilorida . La apertura de este canal iónico despolariza la célula gustativa, lo que da lugar a la excitación de las fibras gustativas aferentes con la que está conectada. Las soluciones ácidas siempre son de bajo pH y el aumento de la concentración de iones de nitrógeno da lugar al cierre de un canal especifico de K+, ademas de la apertura del canal de Na+ . Una vez más, la activación del receptor gustativo da lugar a la despolarización de la célula gustativa. La despolarización abre los canales de calcio dependientes de voltaje, lo que desencadena la exocitosis del neurotransmisor por parte de las células gustativas, lo que excita las fibras nerviosas aferentes apropiadas.


MECANISMO



Además los H+ inhiben al canal de K+ ® estimulando la depolarización de la membrana.


Ác. Clorhídrico (H+) + receptor (canal de Na) ® H+ ® provoca la apertura de los canales de Ca++ ® entra Ca++ ® depolarización ® salen las vesículas ® transmisión de la señal.
Posee casi 10.000 papilas gustativas que están distribuidas de forma desigual en la cara superior de esta. Por lo general las papilas sensibles a los sabores dulce y salado se concentran en la punta de la lengua, las sensibles al ácido ocupan los lados y las sensibles a lo amargo están en la parte posterior.

VISIÓN

LUZ VISIBLE

La luz visible es una de las formas como se desplaza la energía. Las ondas de luz son el resultado de vibraciones de campos eléctricos y magnéticos, y es por esto que son una forma de radiación electromagnética (EM). La luz visible es tan sólo uno de los muchos tipos de radiación EM, y ocupa un pequeño rango de la totalidad del espectro electromagnético . Sin embargo, podemos percibir la luz directamente con nuestros ojos, y por la gran importancia que tiene para nosotros, elevamos la importancia de esta pequeña ventana en el espectro de rayos EM.
El ojo humano evolución en respuesta a la emitida por el Sol. Es por esto que nuestros ojos son sensibles a los colores que abarcan del amarillo al verde.

Las ondas de luz tienen longitudes de onda entre 400 y 700 nanómetros (4 000 y 7 000 Å). A medida que el arcoiris se llena de matices, nuestros ojos perciben diferentes longitudes de ondas de luz. La luz roja tiene longitudes de onda relativamente largas, aproximadamente 700 nm (10-9 metros) de largo. La luz azul y la luz morada tienen ondas cortas, aproximadamente 400 nm. Las ondas más cortas vibran a mayores frecuencias, y tienen energías más elevadas. Las luz roja tiene una frecuencia aproximada de 430 terahertz, mientras que la frecuencia de la luz azul es de aproximadamente 750 terahertz. Los fotones rojos tienen aproximadamente 1.8 electrón-Volt(eV) de energía, mientras que cada fotón azul transmite aproximadamente 3.1 eV.

Los vecinos de la luz visible en el espectro EM son la radiación infrarroja de un lado, y luz ultravioleta del otro lado. La radiación infrarroja tiene longitudes de ondas más largas que la luz roja, es por esto que oscila a una frecuencia menor y lleva consigo menor energía. La radiación ultravioleta tiene longitudes de ondas más cortas que la luz azul o violeta, por lo que oscila más rápidamente, y porta mayor cantidad de energía por protón que la luz visible.

La luz viaja a la increíble velocidad de 299 792 458 kilometros por segundo (aproximadamente 186 282.4 millas por segundo). A esta increíble velocidad, ¡la luz podría girar más de siete veces alrededor de la Tierra en cada segundo!. La letra "c" minúscula se usa en las ecuaciones para representar la velocidad de la luz, como es el caso de la famosa relación entre energía y materia de Einstein: "E = mc2". Todas las formas de ondas electromagnéticas, incluyendo los rayos X y las ondas de radio , y todas las demás frecuencias a lo largo del espectro EM, también viajan a la velocidad de la luz. La luz viaja más rapidamente en el vacío, y se mueve más lentamente en materiales como agua o vídrio.

EL OJO Y LAS CÉLULAS FOTORRECEPTORAS
Capas de la Retina
Las capas de afuera hacia adentro son:
-Capa Pigmentaria
-Capa de Bastones y Conos
-Membrana Limitante Externa
-Capa Nuclear Externa
-Capa Plexiforme Externa
-Capa Nuclear Interna
-Capa Plexiforme Interna
-Capa de Células Ganglionares
-Capa de las Fibras del Nervio Óptico
-Membrana Limitante Interna
Una vez que la luz ha atravesado el sistema de lentes oculares y, después, el humor vítreo, penetra en la retina desde dentro; es decir, primero atraviesa las células ganglionares; y luego las capas plexiformes y las capas nucleares; por último, llega a las capa de bastones y conos, localizados en toda la cara externa de la retina. Esta distancia mide varios cientos de micras.
El Globo ocular posee una envoltura protectora externa llamada esclerótica, que lo cubre completamente; no obstante, en su parte posterior , la esclerótica forma un espacio transparente que se llama Córnea, A travéz de esta entran los rayos de luz, por debajo de la esclerótica esta un capa pigmentada llamada Coroides, que contiene muchos de los vasos sanguíneos que transportan nutrientes y oxigeno y que retiran dióxido de carbono de los tejidos. Revistiendo por dentro a las partes posteriores de la Coroides, está el tejido nervioso llamado Retina, que contiene las células receptoras o fotorreceptores, los cuales son los Conos y Bastones.
Los bastones son más largos y finos que los conos, salvo algunas excepciones.
Los bastones miden entre 2 y 5 micras de diámetro, mientras que los conos miden entre 5 y 8 micras; teniendo como principales segmentos:
- Segmento Externo
Donde se encuentra el fotopigmento sensible a la luz.
En el caso de los bastones es la rodopsina, mientras q en el caso de los conos se hallan los pigmentos de color.
- Segmento Interno
Contiene el citoplasma con sus organelas.
- Núcleo
Cuerpo Sináptico
Se encuentra conectado a las células neuronales que le siguen, las células horizontales y bipolares, que constituyen el siguiente eslabón de la cadena visual.

FOTOQUÍMICA DE LA VISIÓN
La visión, o sentido de la vista, es una función sumamente compleja, en la que intervienen numerosas estructuras. Para las personas en general, ojos y visión son sinónimos. Este concepto es erróneo, ya que los ojos son sólo parte de un amplio sistema que se extiende a la porción más posterior del cerebro.


VISIÓN A COLOR
El universo por doquier se encuentra rodeado por Ondas Electromagnéticas de diversas longitudes. La luz es la porción de este espectro que estimula la retina del ojo humano permitiendo la percepción de los colores. Esta región de las ondas electromagnéticas se llama Espectro Visible y ocupa una banda muy estrecha de este espectro.


Mecanismo Tricolor de la Detección del Color
Sentido de la vista o de la visión: es la capacidad de detectar la energía electromagnética dentro de la luz visible por el ojo e interpretar por el cerebro la imagen como vista. Existe desacuerdo de si constituye uno, dos o tres sentidos distintos, dado que diversos receptores son responsables de la percepción del color (frecuencia de la luz) y el brillo (energía de la luz). Algunos discuten que la percepción de la profundidad también constituye un sentido, pero se conoce que esto es realmente una función post-sensorial cognitiva derivada de tener visión.

Existen tres tipos de conos que depende del tipo de opsinas que contengan:
Unos que presentan una sensibilidad máxima para las longitudes onda más largas (conos rojos).
Otros con mayor sensibilidad a las longitudes de onda medias (conos verdes).
Otros con mayor sensibilidad a las longitudes de onda más cortas (conos azules).
Estos tres tipos de conos dan lugar a la visión tricromática que poseen la mayoría de los humanos.
Estudios fotométricos y psicofisiológicos han demostrado que en la retina humana los conos rojos tienen un pico de sensibilidad a los 558 nm, los conos verdes a los 531 nm. y los conos azules a los 420 nm.
A diferencia de los seres humanos, algunas especies de mamíferos poseen una visión dicromática debido a la presencia de bastones y de sólo dos tipos de conos: los sensibles a las longitudes de onda medias y cortas. Por el contrario otros animales como las aves, reptiles y peces poseen mecanismos de visión tricomátrica e incluso pentacromática.
Aunque en retina de aves, peces y reptiles existen algunas diferencias morfológicas entre los diversos tipos de conos, no esta claro que ocurra lo mismo en la retina de los primates. Sin embargo parece ser que si existen evidencias que muestran que es posible distinguir al menos a los conos azules del resto de los conos utilizando métodos exclusivamente morfológicos.


El segmento externo del bastón que se extiende hasta la capa pigmentaria de la retina, tiene 40% de concentración de la rodopsina o púrpura visual. Esta sustancia se compone de una combinación de la proteína escotopsina y del pigmento carotenoide retinal.
Además esta forma de retinal, es de un tipo determinado, denominado 11-cis retinal. Esta forma cis del retinal es importante porque se trata de la única que o puede unirse a la escotopsina para sintetizar la rodopsina.
Cuando la rodopsina absorbe la energía lumínica, este pigmento se descompone en billonésimas de segundo. La causa reside en la fotoactivación de los electrones de la fracción retinal de la rodopsina, que determina un cambio instantáneo de la forma cis a la forma toda-trans que conserva la misma estructura química que la forma cis, pero con una estructura física distinta: se trata de una molécula recta en lugar de una molécula doblada. Como la orientación tridimensional del los sitios de reacción de todo-trans retinal ya no se ajusta a los sitios de reacción de la proteína escotopsina, aquél comienza a separarse de la escotopsina. El producto inmediato es la batorrodopsina, una combinación parcialmente disociada del todo-trans retinal y la escotopsina.
La batorrodopsina es sumamente inestable y se descompone en nanosegundo en lumirrodopsina. Ésta, a su vez, se decompone en microsegundo en metarrodopsina I; a continuación, en un milisegundo aproximadamente forma metarrodopsina II y, por último, mucho más lentamente (en segundos), se descomponen los productos completamente disociados:
Escotopsina.
La metarrodopsina II, también llamada rodopsina activa, es la que introduce los cambios eléctricos de los bastones que transmite después la imagen visual al sistema nervioso central.
Regeneración de la Rodopsina
La primera etapa de la regeneración de la rodopsina consiste en la reconversión del todo-trans retinal en 11-cis retinal.
Este proceso requiere energía metabólica y está catalizada por la enzima retinal isomerasa. Una vez formado el 11-cis retinal, se recombina automáticamente con la escotopsina para volver a formar rodopsina, la cual permanece estable hasta que la absorción de energía lumínica vuelve a desencadenar su descomposición.
Función de la Vitamina A en la Formación de Ropsina
Existe una segunda vía química mediante la cual el todo-trans retinal se convierte en 11-cis retinal. Consiste en la conversión de todo-trans retinal primero en todo-trans retinol que es una forma de la vitamina A. Después, de todo- trans retinol se transforma en 11-cis retinol por la influencia de la enzima isomerasa; y, por último, el 11-cis retinol se convierte en 11- cis retinal que se combina con la escotopsina para formar nueva rodopsina. La vitamina A está presente tanto en el citoplasma de las bastones como en el epitelio pigmentario de la retina; en consecuencia, en condiciones normales siempre se encuentra disponible para formar nuevo retinal cuando se necesita por el contrario, cuando la cantidad de retinalen la retina resulta excesiva, el sobrante se convierte de nuevo en vitamina A, con lo que disminuye la cantidad de pigmento fotosensible de la retina.
Esta interconversión entre el retinal y la vitamina A contribuye de modo especial a la adaptación a largo plazo de la retina a las diferentes intensidades de luz.
Fototransducción
Cuando la retina esta en condiciones de oscuridad, se encuentran abiertos una serie de canales iónicos a nivel de los segmentos externos de los fotorreceptores que permiten la entrada fundamentalmente de iones Sodio. Esta entrada de Sodio, despolariza parcialmente a los fotorreceptores, permitiendo la liberación de neurotransmisor a nivel de sus terminales sinápticos.
El transmisor liberado se supone que es Glutamato. Cuando la luz estimula a la molécula de rodopsina, se producen una sería de cambios que se presentan esquemáticamente en la imagen siguiente, que van a producir el cierre de los canales iónicos permeables al sodio.
Por tanto cesa la entrada de sodio y el fotorreceptor se hiperpolariza, con lo que deja de liberar el neurotransmisor.
La corriente que se produce durante las condiciones de oscuridad es debida en un 80% a la entrada de iones sodio, sin embargo el canal es también permeable a los iones calcio y magnesio. Además en oscuridad debe existir un mecanismo para eliminar tanto el calcio como el exceso de sodio. Este mecanismo parece ser que consiste en un intercambiador sodio/calcio a nivel de la membrana de los segmentos externo. El calcio, además tiene un importante papel en todo el proceso de la fototransducción, ya que aunque no participa directamente en la cascada de la fototransducción, mejora la capacidad de los bastones para recuperarse después de la iluminación, teniendo un importante papel regulador en los fenómenos de adaptación a las condiciones de luz/oscuridad.
Fotoquímica de la Visión en Color por los Conos
La composición química de los fotopigmentos de los conos coincide casi por completo con la de la rodopsina de los bastones. La única diferencia reside en que las porciones proteicas, las opsinas, llamados fotopsinas en los conos, son ligeramente distintas de la ecotopsina de los bastones. La porción retinal de todos lo pigmentos visuales es exactamente la misma en los conos que en los bastones. Los pigmentos sensibles al color de los conos son, por tanto, combinaciones de retinal y fotopsinas.
Cada uno de los difeentes conos sólo posee uno de los tres tipos de pigmentos de color lo que determina la sensibilidad selectiva de los conos a coloresdistintos: azul, verde y rojo. Estos pigmentos de color se denominan respectivamente, pigmento sensible al azul, pigmento sensible al verde y pigmento sensible al rojo.

TRANSPORTE A TRAVES DE MEMBRANAS

Conceptos de permeabilidad y potencial de membrana


FOTOBIOLOGIA

Las reacciones luminosas usan la energía luminosa para producir ATP y NADPH. La moléculas que intervienen en esta función se encuentran dentro de la membrana de los tilacoides, los cuales están constituidos por dos complejos llamados fotosistema I (FSI) y fotosistema II (FSII). Cada fotosistema tiene moléculas de clorofila, junto con otras moléculas y proteínas. Una molécula de clorofila de cada fotosistema se encuentra en una región llamada el centro de reacción, donde la energía absorbida de la luz inicia la transferencia de los electrones a otras moléculas.

Juntos, el FSI y el FSII mueven los electrones del agua al NADP+, formando NADPH. La absorción de la luz excita un electrón del centro de reacción del FSI a un mayor nivel de energía. Una molécula captura al electrón de alta energía y por medio de la cadena de transporte lo pasa al NADP+. El electrón perdido del FSI es reemplazado por un electrón transferido del FSII por otra cadena de transpeorte de electrones. El FSII reemplaza sus electrones extrayéndolos de las molécula del agua, dejando como producto el oxígeno.
FENÓMENO FOTOQUÍMICO
La fotoquímica es el estudio de las transformaciones químicas provocadas o catalizadas por la emisión o absorción de luz visible o radiación ultravioleta. Una molécula en su estado fundamental (no excitada) puede absorber un quantum de energía lumínica, esto produce una transición electrónica y la molécula pasa a un estado de mayor energía o estado excitado. Una molécula excitada es más reactiva que una molécula en su estado fundamental.
El fenómeno fotoquímico precisa de fases principales:

  1. Recepción de la energía luminosa
  2. Reacción química propiamente dicha.

Según se opere con una sustancia única o con un sistema de varios cuerpos en presencia, se realizará, bien una descomposición de la sustancia en sus elementos (fotólisis), bien una combinación de varios cuerpos en uno solo (fotosíntesis).

Ciertas sustancias orgánicas sometidas a la influencia de la luz, cambian de color. Si se vuelven a colocar en la oscuridad toman de nuevo su color primitivo. Se trata de una variación reversible de color, que se denomina fototropía.

Los cuerpos que presentan fototropía son relativamente numerosos. Una exposición de un minuto a la luz de una lámpara de 50 vatios, colocada a 5 cm basta en general para operar el cambio de color, estando la sustancia fotótropa en solución acuosa, alcohólica o acetónica, y aún en estado cristalino.

Algunas veces, el color debido a la iluminación se mantiene varios días en la oscuridad antes de desaparecer pero, con mayor frecuencia, el retorno al estado primitivo es rápido.

La fotrotopía es atribuida a un desplazamiento reversible de los electrones, correspondientes a varias formas mesómeras de una misma sustancia (electrotropía).


PIGMENTOS ANTENA Y CAPTACIÓN DE LUZ
En el cloroplasto, los pigmentos están estrechamente asociados a proteínas y se alojan en la bicapa lipídica de los tilacoides. Según el modelo admitido actualmente, estos complejos proteína-clorofila se encuentran empaquetados formando unidades denominadas fotosistemas. Cada unidad contiene de 200 a 400 moléculas de pigmento que tienen por finalidad captar la luz como una antena, forman el llamado complejo antena. Cuando la energía de la luz se absorbe por uno de los pigmentos de la antena, pasa de una molécula a otra de pigmento del fotosistema hasta que alcanza una forma especial de clorofila a que constituye el centro de reacción del fotosistema.